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Relevant sections of the textbook

• Chapter 3

• Chapter 5



Images of functions

A function f : X → Y induces a function

f∗ : P(X ) → P(Y )

defined by
f∗(U) = {y ∈ Y | ∃x ∈ U (y = f (x))}

for any subset U of X . The subset f∗(U) is called the image of U under f .
Note that

id∗ = idP(X )

Proposition
Show that a function f : X → Y is surjective if and only if f∗(X ) = Y.

We sometimes denote the set f∗(X ) by Im(f ).



Suppose f : X → Y and g : Y → Z are functions. We prove that

g∗ ◦ f∗ = (g ◦ f )∗ .

Recall that in order to prove equality of functions we need to use function
extensionality.
Suppose T is a subset of Z . Then

(g∗ ◦ f∗) U = g∗ {y ∈ Y | ∃x ∈ U (y = f (x))}
=
{

z ∈ Z | ∃y ∈ Y ∃x ∈ U (y = f (x) ∧ z = g(y )
}

= {z ∈ Z | ∃x ∈ U (z = g(f (x)))}
= (g ◦ f )∗U



Image factorization

Proposition
Every function f : X → Y factorizes as a surjection followed by an injection,
i.e. there are surjection p and injection m such that f = m ◦ p.
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Proof.
Define p to be the assignment p : X → Im(f ) which takes x to f (x). This
assignment is well-defined since f is well-defined and that f (x) ∈ Im(f ). Note
that p is surjective since for any y ∈ Im(f ) there is some x such that f (x) = y
by the definition of Im(f ) and therefore there is some x such that
p(x) = f (x) = y .
Define m to be the assignment m : Im(f ) → Y which takes y to y . This
assignment is well-defined since Im(f ) ⊆ Y . Note that m is injective since
m(y ) = m(y ′) implies y = y ′ simply because m(y ) = y for all y ∈ Im(f ).
Finally we have to show that p and m compose to f . To this end, note that for
every x ∈ X

m(p(x)) = m(f (x)) = f (x) .

By function extensionality we have that m ◦ p = f .
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Graph surjects to image

Exercise
1 Show that the assignment which takes (x , f (x)) to f (x) defines a function

from π2 : Gr(f ) → Im(f ) which is surjective.

2 Show that the following diagram of functions commute:

Gr(f ) X × Y

Im(f ) Y

π2 π2



Pre-images

A function f : X → Y induces a function

f−1 : P(Y ) → P(X )

defined by
f−1(S) = {x ∈ X | f (x) ∈ S}

for any subset S of Y .
The subset f−1(S) is called the pre-image of S under f .
Note that

id−1
X = idP(X )



Suppose f : X → Y and g : Y → Z are functions. We prove that

f−1 ◦ g−1 = (g ◦ f )−1 .

Recall that in order to prove equality of functions we need to use function
extensionality.
Suppose T is a subset of Z . Then

(f−1 ◦ g−1)T = f−1 {y ∈ Y | g(y ) ∈ T}
=
{

x ∈ X | f (x) ∈ {y ∈ Y | g(y ) ∈ T}
}

= {x ∈ X | g(f (x)) ∈ T}
= (g ◦ f )−1T



Fibres

Definition
For a function f : X → Y, and an element y ∈ Y, the subset

f−1(y ) = {x ∈ X | f (x) = y}

of X is called the fibre of f at y and also the pre-image of y under f .
Although, technically incorrect, people write f−1(y ) instead of f−1({y}).

Example
Consider the function ⌊−⌋ : R → Z which takes a real number to the greatest
integer less than it. What are the fibres

• ⌊−⌋−1(0)?

• ⌊−⌋−1(⌊π⌋)?



Injections and subsingletons

Definition
A set U is said to be a subsingleton if it is a subset of the one-element set 1.

Proposition
A function f : X → Y is injective if and only if for every y ∈ Y the fibres
f−1(y ) are all subsingletons.



The operation of taking fibres of a function is itself a function. More
specifically, given a function f , taking fibres of f at different elements y ∈ Y
as a function is equal to the composite

Y
{−}−−→ P(Y ) f−1

−−→ P(X ) ,

that is for all y ∈ Y ,
f−1(y ) = f−1{y}

Exercise
Consider the family {f−1(y ) | y ∈ Y}. Show that all members of this family
are mutually disjoint, and that their union is fact X .⊔

y∈Y

f−1(y ) ∼=
⋃
y∈Y

f−1(y ) = X



As the last exercise suggests, we can associate to every function a family of
sets given by fibres of that function at different elements of the codomain.

Interestingly, we also have the converse association: to a family
{Yx | x ∈ X} we associate a function as follows: let the domain to be the
disjoint union

⊔
x∈X

Yx and let the codomain be X . The associated function

p : {Yx | x ∈ X} → X takes an element in(x) ∈
⊔
x∈X

Yx to x ∈ X .

functions families of sets

T =def taking fibres

U =def taking union

Y

X

{Yx | x ∈ X}f



Factorization of function via quotient

Recall from problem 5 of homework #4 that for each equivalence ∼ on a set
X we can construct a set X/ ∼ whose elements are equivalence classes

[x ]∼ = {y ∈ X | x ∼ y}

for all x ∈ X . Now collect all such equivalence classes into one set:

X/ ∼=def {[x ]∼ | x ∈ X}

We call the set X/ ∼ the quotient of X by equivalence relation ∼.



Example of quotient by an equivalence relation

Consider the relation ∼ on N× N where

(m, n) ∼ (m′, n′) ⇔ m + n′ = n + m′ .

For instance, the equivalence class [(0, 0)] is the set {(0, 0), (1, 1), (2, 2), ...}.
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We can define the operation of addition on N× N/ ∼ by an assignment
+∼ : N× N/ ∼ ×N× N/ ∼→ N× N/ ∼ which assigns to the pair
([(m, n)], [(m′, n′)]) the class [(m + m′, n + n′)].

Exercise
Show that the assignment +∼ is well-defined, i.e. it defines a function.

Exercise
Show that the quotient N×N/ ∼ is isomorphic to the set Z of integers. Does
your isomorphism preserve addition?

Exercise
Define multiplication on the quotient N× N/ ∼. Does your isomorphism
preserve addition?



Image factorization

Proposition
Suppose f : A → B is a function. We can factor f into three functions

A B

C D

f

q

g

i

that is f = i ◦ g ◦ q, where q is a surjection, g is a bijection, and i is an
injection.



Proof.
We have to construct the sets C, D and a surjection q, a bijection g and an
injection i . We define an equivalence relation ∼ on A by

x ∼ y ⇔ f (x) = f (y ) .

Now we define C to be A/ ∼, and D to be the image f∗(A) of A under f . We
also define q to be the obvious quotient map and i to be the obvious
inclusion. Clearly, q is surjective and i is injective. We define g to be the
assignment which takes an equivalence class [x ] to the element f (x) ∈ B.
Note that g is well-defined, since if [x ] = [y ] then x ∼ y and therefore, by the
definition of ∼, we have f (x) = f (y ). We now show that g is a bijection. g is
injective since for every x , y ∈ A, if g([x ]) = g([y ]) then f (x) = f (y ) and
therefore, [x ] = [y ]. Also, g is surjective: given b in f∗(A) there is some a ∈ A
such that b = f (a) = g([a]).



Our factorization diagram becomes

A B

A/ ∼ f∗(A)

f

q

g

i

In fact, g ◦ q = p : X → Im(f ).



The set of functions

Suppose X and Y are sets. We can define a new set consisting of all the
functions from X to Y . We denote this set by Y X . Explicitly,

Y X = {f : X → Y} ∼= {R ⊂ X × Y | R is a functional relation}



Exercise
Suppose X is a finite set with m elements and Suppose Y is a finite set with
n elements. Then the set Y X has nm elements.



The set of functions behaves like exponentials

Proposition
Suppose X , Y , Z are sets. We have

• X ∅ ∼= 1

• ∅X ∼= 1 if and only if X = ∅. In particular ∅∅ ∼= 1.

• (X Y )Z ∼= X Y×Z .

• X Y +Z ∼= X Y × X Z



Let Ω be a set with two elements, for instance {⊤,⊥}. We show that

ΩX ∼= P(X )

that is the power set of X is isomorphic to the set of functions from X to Ω.
To this end we construct two functions f and g and prove that they are
inverse of each other. We have functions
λ(φ : ΩX ).{x ∈ X | φ(x) = ⊤} : ΩX → P(X ), and λ(S : P(X )).χS : P(X ) → ΩX

where, we recall, that χS is the characteristic function of S ⊆ X .



Dependent product of sets

Let {Xi | i ∈ I} be a family of sets.
Define the set

∏
i∈I Xi to be

{h : I →
⋃
i∈I

Xi | ∀i (h(i) ∈ Xi)}

Note that if I is a finite set, say I = {1, 2, · · · , n} then∏
i∈I

Xi
∼= X1 × X2 × · · · × Xn

In case where I is a finite set, if each Xi is inhabited then the cartesian
product

∏
i∈I Xi is also inhabited. But we cannot prove this for a general I.



Axiom of choice

Axiom of Choice (AC) asserts that the set
∏

i∈I Xi is inhabited for any
indexing set I and any family (Xi | i ∈ I) of inhabited sets.



Warning
The axiom of choice is highly non-constructive: if a proof of a result that does
not use the axiom of choice is available, it usually provides more information
than a proof of the same result that does use the axiom of choice.



Logical incarnation of Axiom of Choice

Proposition
The axiom of choice is equivalent to the statement that for any sets X and Y
and any formula p(x , y ) with free variables x ∈ X and y ∈ Y, the sentence

∀x ∈ X ∃y ∈ Y p(x , y ) ⇒ ∃(f : X → Y )∀x ∈ X , p(x , f (x)) (1)

holds.



Proof. Assume axiom of choice. Let X and Y be arbitrary sets and p(x , y )
any formula with free variables x ∈ X and y ∈ Y . For each x ∈ X , define
Yx = {y ∈ Y | p(x , y )}. Note that Yx is inhabited for each x ∈ X by the
assumption ∀x ∈ X , ∃y ∈ Y , p(x , y ). By the axiom of choice there exists a
function h : X →

⋃
x∈X

Yx such that h(x) ∈ Yx for all x ∈ X . We compose the

function h with the inclusion ∪x∈X Yx ↣ Y , which we get from the fact that
Yx ⊆ Y for each x ∈ X , to obtain a function f : X → Y . But then
p(x , f (x)) = p(x , h(x)) is true for each x ∈ X by definition of the sets Yx .



Conversely, suppose that we have a family (Xi | i ∈ I) of inhabited sets.
Consider the cartesian product

∏
i∈I Xi . We want to show that this product is

inhabited. Define
p(i , x) =def (x ∈ Xi)

Now, we apply the sentence (1) to the sets I,
⋃
i∈I

Xi and the formula p(i , x)

just defined: we find a function f : I →
⋃
i∈I

Xi such that p(i , f (i)) for all i ∈ I.

But, by definition of p(i , x), we conclude that f (i) ∈ Xi for all i ∈ I. Hence, f is
a member of

∏
i∈I Xi .



Axiom of Choice and surjections

Given a function p : Y → X , consider the associated family {Yx | x ∈ X} of
sets obtained by taking fibres of p at different elements of x .



Axiom of Choice and surjections

Given a function p : Y → X , consider the associated family {Yx | x ∈ X} of
sets obtained by taking fibres of p at different elements of x .

Lemma
A maps p : Y → X is surjective if and only if the fibres Yx are inhabited for all
x ∈ X.



Axiom of Choice and surjections

Given a function p : Y → X , consider the associated family {Yx | x ∈ X} of
sets obtained by taking fibres of p at different elements of x .

Lemma
A maps p : Y → X is surjective if and only if the fibres Yx are inhabited for all
x ∈ X.

Lemma
An element of

∏
x∈X Yx is the same thing as a section of p : Y → X.



Axiom of Choice and surjections

Proposition
Axiom of choice is equivalent to the statement that every surjection has a
section.

Proof.
Assume AC. Let p : Y → X be a surjection. Therefore all the fibres Yx are
inhabited. By AC, the product

∏
x∈X Yx is inhabited. Hence, by the last

lemma above, p has a section.



Axiom of Choice and surjections

Proposition
Axiom of choice is equivalent to the statement that every surjection has a
section.

Proof.
Assume AC. Let p : Y → X be a surjection. Therefore all the fibres Yx are
inhabited. By AC, the product

∏
x∈X Yx is inhabited. Hence, by the last

lemma above, p has a section.



Axiom of Choice and surjections

Proposition
Axiom of choice is equivalent to the statement that every surjection has a
section.

Proof.
Assume AC. Let p : Y → X be a surjection. Therefore all the fibres Yx are
inhabited. By AC, the product

∏
x∈X Yx is inhabited. Hence, by the last

lemma above, p has a section. Conversely, suppose that every surjection
has a section. Let {Yx | x ∈ X} be family of sets where the set Yx is
inhabited for every x ∈ X . Consider the associated function ⊔x∈X Yx → X .
Note that this map is surjective by our assumption and the first lemma above.
Hence, it has a section which is the same thing as an element of

∏
x∈X Yx .

Therefore AC holds.



Theorem (Diaconescu, Goodman-Myhill)
The axiom of choice implies the law of excluded middle.



Cantors’ theorem: A < P(A)

Lemma
If a function σ : A → BA is surjective then every function f : B → B has a
fixed point.

Proof.
Because σ is a surjection, there is a ∈ A such that σ(a) = λx : A . f (σ(x)(x)),
but then σ(a)(a) = f (σ(a)(a).

Corollary
There is no surjection A → P(A).



Let’s associate to each finite set X a number card(X ), called the “cardinality”
of X , which measures how many (distinct) elements the set X has. We then
have

• card(X + Y ) = card(X ) + card(Y ) and

• card(X × Y ) = card(X ) × card(Y ).

More generally, for any finite set I and a family of finite sets {Xi | i ∈ I}, we
have

• card(
⊔
i∈I

Xi) =
∑
i∈I

card(Xi) and

• card(
∏

i∈I Xi) =
∏

i∈I card(Xi)



Questions

Thanks for your attention!


